
J Glob Optim (2008) 40:697–718
DOI 10.1007/s10898-006-9119-8

O R I G I NA L PA P E R

Global minimization of rational functions and the
nearest GCDs

Jiawang Nie · James Demmel · Ming Gu

Received: 17 October 2006 / Accepted: 25 October 2006 / Published online: 16 December 2006
© Springer Science+Business Media B.V. 2006

Abstract This paper discusses the global minimization of rational functions with or
without constraints. We propose sum of squares relaxations to solve these problems,
and study their properties. Some special features are discussed. First, we consider
minimization of rational functions without constraints. Second, as an application, we
show how to find the nearest common divisors of polynomials via unconstrained min-
imization of rational functions. Third, we discuss minimizing rational functions under
some constraints which are described by polynomials.

Keywords Rational function · Polynomial · Global minimization · Sum of squares
(SOS) · Greatest common divisor · Quadratic module

1 Introduction

Consider the problem of minimizing a rational function

r∗ = min
x∈Rn

r(x) := f (x)

g(x)
(1.1)

s.t. h1(x) ≥ 0, . . . , hm(x) ≥ 0, (1.2)

where f (x), g(x), hi(x) ∈ R[X]. Here R[X] is the ring of real polynomials in X =
(x1, . . . , xn). Our goal is to find the global minimum r∗ of the rational function r(x),

J. Nie (B)· M. Gu
Department of Mathematics, University of California, Berkeley, CA 94720, USA
e-mail: njw@math.berkeley.edu

J. Demmel
Department of Math & EECS, University of California, Berkeley, CA 94720, USA
e-mail: demmel@cs.berkeley.edu

M. Gu
e-mail: mgu@math.berkeley.edu



698 J Glob Optim (2008) 40:697–718

and if possible, one or more global minimizer(s) x∗ such that r(x∗) = r∗. This contains
a broad class of nonlinear global optimization problems. Without loss of general-
ity, assume that g(x) is not identically zero and is nonnegative on the feasible set,
otherwise we can replace f (x)

g(x)
by f (x)g(x)

g2(x)
.

When n = 1 and there are no constraints, i.e., the case of one-dimensional uncon-
strained minimization, the problem is simple. As we can see, γ is a lower bound for
r(x) if and only if the univariate polynomial f (x) − γ g(x) is nonnegative, i.e.,

f (x) − γ · g(x) ≥ 0 ∀x ∈ R.

As is well-known, a univariate polynomial is nonnegative if and only if it can be
written as sum of squares (SOS) of polynomials [28]. This poses a convex condition
[24,32] (actually it is a linear matrix inequality (LMI)) on γ for given f (x), g(x). Thus
the problem (1.1) can be reformulated as maximizing γ subject to a particular LMI.
Therefore the problem (1.1) can be solved efficiently as a semidefinite program (SDP)
[5,37].

However, when n > 1, the problem (1.1) can be very hard even if there are no
constraints, which is due to the difficulty that a nonnegative multivariate polynomial
might not be a sum of squares of polynomials [28]. Even in the special case that
deg(f ) = 4 and deg(g) = 0, that is, r(x) becomes a multivariate polynomial of degree
4, to find its global minimum is NP-hard, as mentioned in Nesterov [19]. So we need
some approximations of nonnegative polynomials to find an approximate minimum
value (often a guaranteed lower bound) and extract approximate minimizer(s). One
frequently used technique in polynomial optimization is to approximate nonnega-
tive polynomials by sum of squares of polynomials, i.e., SOS relaxations. We refer to
[15,23,24].

To test nonnegativity of a general polynomial of degree 4 or higher is NP-hard in n,
the number of variables. For instance, for a given generic n − by − n symmetric matrix
A = (aij)n,n, to test whether the quartic homogenous polynomial

[x2]TA[x2] :=
n∑

i,j=1

aijx2
i x2

j

is nonnegative is NP-hard [7]. The matrix A is said to be co-positive if xTAx is nonneg-
ative for every nonnegative vector x ∈ R

n. However, to test whether a polynomial is a
sum of squares of polynomials can be determined efficiently by solving a semidefinite
program [23,24]. Recently, there has been much work on finding the global minimum
of polynomial functions via sum of squares (SOS) relaxations (also called SDP or LMI
relaxation). We refer to [11,15,21,23,24] and the references therein for work in this
area. Our goal is to use SOS relaxations to solve the global minimization problems
(1.1) and (1.2).

Recently, Jibetean and De Klerk [10] discussed SOS methods to minimize rational
functions. They showed how to get lower bounds of rational functions by applying
SOS relaxations in a natural way. To be more precise, for problems (1.1) and (1.2),
they proposed to find a lower bound by computing maximum γ such that

f (x) − γ g(x) is a sum of squares about x.

The above condition essentially poses a particular LMI constraint for γ . So such a
maximum γ can be found by solving a particular SDP. However, [10] did not discuss
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on how to find the global minimizer(s), which is often more interesting than lower
bounds. In this paper, we revisit the SOS methods for problems (1.1) and (1.2), and
discuss the special features of SOS relaxations and their dual problems. Interestingly,
from the optimal dual solutions, we find that the minimizers can be extracted. As an
application, we show how to find nearest common divisors by globally minimizing a
rational function.

Throughout this paper, we will use the following notations. R (C) is the field of real
(complex) numbers. N is the set of nonnegative integers. For any complex number z, z̄
denotes its complex conjugate. For any integer vector α ∈ N

n, define xα := xα1
1 · · · xαn

n

and |α| := α1 +· · ·+αn.
∑

R[X]2 denotes the cone of sums of squares of polynomials
in R[X]. For any real matrix (or vector) A, AT denotes its transpose. For a symmetric
matrix W, W � 0 (� 0) means that W is positive semidefinite (definite). For any two
given matrices U and V of the same size, their inner product U • V is defined as

U • V := ∑
i,j UijVij. For any x ∈ R

n, its two norm ‖x‖2 is defined as
√

x2
1 + · · · + x2

n.
This paper is organized as follows. Section 2 discusses the method of SOS relaxation

and the special features in minimizing rational functions without constraints. Section 3
shows the application of minimizing rational functions in finding nearest GCDs. Sec-
tion 4 then discusses SOS relaxations and the special features in constrained case. In
Sect. 5, we draw some conclusions and discuss some possible future work.

2 SOS relaxation

In this section, we discuss the global minimization of (1.1) without any constraints.
The constrained case will be handled in Sect. 4.

Obviously, γ is a lower bound for r∗ if and only if the polynomial f (x) − γ g(x) is
nonnegative. By approximating f (x)−γ g(x) by SOS polynomials, we get the following
SOS relaxation

r∗
sos := sup

γ
γ

s.t. f (x) − γ g(x) ∈
∑

R[X]2.

For any feasible γ , we immediately have r(x) ≥ γ for every x ∈ R
n. Thus every fea-

sible γ (including r∗
sos) is a lower bound for r(x), i.e., r∗

sos ≤ r∗. Also see [10] for SOS
relaxations for minimizing rational functions without constraints.

Let 2d = max(deg(f ), deg(g)) (it must be even for r(x) to have a finite minimum)
and m(x) be the column vector of monomials up to degree d

m(x)T =
[

1, x1, . . . , xn, x2
1, x1x2, . . . , x2

n, x3
1, . . . , xd

n

]
.

Notice that the dimension of vector m(x) is
(n+d

d

)
. Then f (x)−γ g(x) is SOS if and only

there exists a symmetric matrix W � 0 of length
(n+d

d

)
such that [24,32] the identity

holds:

f (x) − γ g(x) ≡ m(x)TWm(x). (2.1)

Now we write f (x) = ∑
α∈F fαxα and g(x) = ∑

α∈F gαxα , where F is a finite subset of
N

n, i.e., F is the support of polynomials f (x) and g(x).
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Throughout this paper, we index the rows and columns of matrix W by monomial
powers up to degree d, i.e., the indices for the entries in W have the form (α, β) where
α, β ∈ N

n. For fixed α ∈ F, we define the monomial base matrix Bα as follows (see
[15])

Bα(η, τ) =
{

1, if η + τ = α,
0, otherwise.

When n = 1, the Bα are Hankel matrices. Now we can see that (2.1) holds if and only
if

fα − γ gα = Bα • W, ∀α ∈ F.

Therefore the SOS relaxation of problem (1.1) is essentially the following SDP:

r∗
sos := sup

γ ,W
γ (2.2)

s.t. fα − γ gα = Bα • W, ∀α ∈ F (2.3)

W � 0. (2.4)

Notice that the decision variables are γ and W instead of x. We refer to [5,37] for the
theory and applications of SDP.

Now let us derive the dual problem of SDP (2.2) and (2.3). Its Lagrange function is

L(γ , W, y, S) = γ +
∑

α∈F

(fα − γ gα− < Bα , W >)yα + W • S

=
∑

α∈F

fαyα +
(

1 −
∑

α∈F

gαyα

)
γ +

(
S −

∑

α∈F

yαBα

)
• W,

where y = (yα) and W are dual decision variables (Lagrange multipliers). Here S � 0
corresponds to the constraint W � 0. Obviously it holds

sup
γ ,W

L(γ , W, y, S) =

⎧
⎪⎨

⎪⎩

∑
α∈F fαyα , if

∑
α∈F gαyα = 1,

∑
α∈F yαBα = S,

+∞, otherwise.

Therefore, the dual of problems (2.2) and (2.4) is

r∗
mom := inf

y

∑

α∈F

fαyα , (2.5)

s.t.
∑

α

gαyα = 1, (2.6)

Md(y) � 0 (2.7)

where the matrix Md(y) := ∑
α yαBα is called the d-th moment matrix of y. For an

integer k, the kth moment matrix Mk(y) of a monomial-indexed vector y = (yα) is
defined as

Mk(y) = (yα+β)0≤|α|,|β|≤k.
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We refer to [15] for a more detailed description of moment matrices. (2.5)–(2.7) can
also be considered as a generalization of moment approaches in [15], except the
equality (2.6).

From the derivation of dual problems (2.5) and (2.7) we immediately have that
r∗

sos ≤ r∗
mom, which is referred to as weak duality in optimization duality theory.

Actually we have stronger properties for the SOS relaxation (2.2)–(2.4) and its dual
(2.5)–(2.7) as summarized in the following theorem, which is similar to Theorem 3.2
in [15].

Theorem 2.1 Assume that the SOS relaxation (2.2)–(2.4) has a feasible solution (γ , W).
Then the following properties hold for the primal problems (2.2)–(2.4) and its dual
(2.5)–(2.7):

(i) Strong duality holds, i.e., r∗
sos = r∗

mom, and f (x) − r∗
sosg(x) is SOS.

(ii) The lower bound r∗
sos obtained from SOS relaxation (2.2)–(2.4) is exact, i.e.,

r∗
sos = r∗ if and only if f (x) − r∗g(x) is SOS.

(iii) When r∗
sos = r∗ and u(j) (j = 1, . . . , t) are global minimizers, then every monomial

indexed vector y of the following form

y ∈
⎧
⎨

⎩

t∑

j=1

θjm2d(u(j)) : θj ≥ 0,
t∑

j=1

θj = 1

⎫
⎬

⎭

is an optimal solution to (2.5)–(2.7).

Proof (i) The result can be obtained from the standard duality theory of convex
programming [29, Sect. 30], if we can show that there exists a vector ŷ such that∑

α gα ŷα = 1 and Md(ŷ) � 0. Let µ be a measure on R
n with strictly positive density

everywhere on R
n and finite moments, i.e., | ∫ xαdµ| < ∞ for all α ∈ N

n (e.g., one
density function can be chosen as exp(−∑n

i=1 x2
i )). Define the vector y = (yα) as

follows:

yα =
∫

xαdµ < ∞.

Then we claim that

0 < τ :=
∑

α

gαyα =
∫

g(x)dµ < ∞.

The second inequality is obvious since all the moments of µ are finite. For the first
inequality, for a contradiction, suppose τ ≤ 0, that is,

∫
g(x)dµ ≤ 0.

Since g(x) is assumed to be nonnegative everywhere and µ has positive density every-
where, we must have that g(x) should be identically zero, which is a contradiction. Now
we prove that Md(y) is positive definite. For any monomial-indexed nonzero vector q
with the same length as Md(y) (corresponding to a nonzero polynomial q(x)), it holds
that

qTMd(y)q =
∑

0≤|α|,|β|≤d

yα+βqαqβ =
∫ ⎛

⎝
∑

0≤|α|,|β|≤d

xα+βqαqβ

⎞

⎠ dµ =
∫

q(x)2dµ > 0.
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Now let ŷ = y/τ , which obviously satisfies that
∑

gα ŷα = 1 and Md(ŷ) � 0. In other
words, the problem (2.5)–(2.7) has an interior point. Therefore, from the duality the-
ory of convex optimization, we know that the strong duality holds, i.e., r∗

sos = r∗ and
the optimal solution set of (2.2)–(2.4) is nonempty.

As already shown in (i), the optimal solution set of (2.2)–(2.4) is nonempty, which
implies the conclusion in (ii) immediately.

(iii) When r∗
sos = r∗, the optimal value in (2.5)–(2.7) is also r∗, by strong duality as

established in (i). Now choose an arbitrary monomial-indexed vector y of the form

y =
t∑

j=1

θjm2d(u(j))

for any θ such that θj ≥ 0,
∑t

j=1 θj = 1. Then we have

∑

α∈F

fαyα =
t∑

j=1

θjf (u(j)) =
t∑

j=1

θjr∗ = r∗.

Obviously Md(y) = ∑t
j=1 θjmd(u(j))md(u(j))T � 0. So y is a feasible solution with

optimal objective value. Thus y is a optimal solution to (2.5)–(2.7). ��

The information about the minimizers of (1.1) can be found from the optimal solu-
tions to the dual problem (2.5)–(2.7). Suppose y∗ = (y∗

α) (where y∗
(0,...,0) = 0) is one

minimizer of (2.5)–(2.7) such that the moment matrix Md(y∗) has rank one. Then
there is a vector w, with the same length as Md(y∗), such that

Md(y∗)/y∗
(0,...,0) = wwT ,

where the left-hand side is the called normalized moment matrix, with the (1, 1) entry
being 1. Set x∗ := [ w(2), w(3), . . . , w(n + 1) ]. So for any monomial-index α, it holds
that w(α) = (x∗)α . Now plug the point x∗ into the rational function r(x), evaluate it,
then we can see that

r(x∗) = f (x∗)
g(x∗)

=
∑

α fα(x∗)α∑
α gα(x∗)α

=
∑

α fαy∗
α∑

α gαy∗
α

= r∗
mom = r∗

sos.

In other words, we get a point x∗ at which the evaluation of objective r(x) equals
the lower bound r∗

sos. Therefore, x∗ is a global minimizer and r∗
sos equals the global

minimum r∗. When Md(y∗) (with y∗
(0,...,0) = 0) has rank more than one, but it satis-

fies some flat extension condition (rank(Mk(y∗)) = rank(Mk+1(y∗)) for some integer
0 ≤ k < d), there is more than one global minimizer (the number equals the rank
of the moment matrix), and they can be found numerically by solving an eigenvalue
problem. We refer to [4,9] for more details about the flat extension condition and
extracting minimizers. When it happens that y∗

(0,...,0) = 0, we can not normalize the
moment matrix Md(y∗) to represent some measure, which might be due to the case
that the infimum of r(x) is attained at infinity. For instance, consider the example
r(x) := 1/(1 + x2) for n = 1. The optimal solution is y∗ = (0, 0, 1), which can not be
normalized.

Remark 2.2 When f (x) and g(x) have real common zeros, the solution to the dual
problems (2.5)–(2.7) is not unique. To see this, suppose w is such that f (w) = g(w) = 0,
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and y∗ is an optimal solution to (2.5)–(2.7). Now let ŷ = m2N(w), which is not zero
since ŷ(0,...,0) = 1. Then

∑
α fα ŷα = ∑

α gα ŷα = 0 and MN(ŷ) � 0. So we can see that
y∗+ŷ is another feasible solution with the same optimal value. In such situations, some
extracted points from the moment matrix MN(y∗ + ŷ) may not be global minimizers,
but they might be the common zeros of f (x) and g(x).

In the following we show some examples of minimizing rational functions via SOS
relaxations. The problems (2.2)–(2.4) and its dual (2.5)–(2.7) are solved by YAL-
MIP [17] which is based on SeDuMi [35]. They can also be solved by softwares like
SOSTOOLS [26] and GloptiPoly [8].

Example 2.3 Consider the global minimization of the rational function

(x2
1 + 1)2 + (x2

2 + 1)2

(x1 + x2 + 1)2 .

Solving (2.2)–(2.4) yields the lower bound r∗
sos ≈ 0.7639. The solution y∗ to (2.5)–(2.7)

is

y∗ ≈ (0.2000, 0.1236, 0.1236, 0.0764, 0.0764, 0.0764, 0.0472, 0.0472,

0.0472, 0.0472, 0.0292, 0.0292, 0.0292, 0.0292, 0.0292).

The rank of moment matrix M2(y∗) is one, and we can extract one point x∗ ≈
(0.6180, 0.6180). The evaluation of r(x) at x∗ shows that r(x∗) ≈ 0.7639. So x∗ is a
global minimizer and 0.7639 is the global minimum (approximately, ignoring round-
ing errors).

Example 2.4 Consider the global minimization of the rational polynomial

x4
1 − 2x2

1x2x3 + (x2x3 + 1)2

x2
1

.

The lower bound given by (2.2)–(2.4) is r∗
sos ≈ 2.0000. The solution y∗ to (2.5)–(2.7) is

y∗ ≈ (1.0859, −0.0000, −0.0000, −0.0000, 1.0000, 0.0000, −0.0000, 0.8150, −0.0859,

0.8150, −0.0000, −0.0000, −0.0000, −0.0000, 0.0000, −0.0000, −0.0000, −0.0000,

− 0.0000, −0.0000, 1.0859, 0.0000, −0.0000, 0.8150, 0.0859, 0.8150, 0.0000, 0.0000,

− 0.0000, −0.0000, 2.3208, −0.0000, 0.1719, 0.0000, 2.3208).

The moment matrix M2(y∗) does not satisfy the flat extension condition, and no
minimizers can be extracted. Actually one can see that 2 is the global minimum by
observing the identity

f (x) − 2g(x) = (x2
1 − x2x3 − 1)2.

The lower bound 2 is achieved at (1, 0, 0) and hence is the global minimum. There are
infinitely many global minimizers.

The relationship between the bounds is r∗
mom = r∗

sos ≤ r∗. But it may happen
that r∗

sos < r∗, just as in SOS relaxations for minimizing polynomials. Let us see the
following example.
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Example 2.5 Consider the global minimization of the rational function

x4
1x2

2 + x2
1x4

2 + x6
3

x2
1x2

2x2
3

.

The lower bound given by (2.2)–(2.4) is r∗
sos = 0, and the solution y∗ to (2.5)–(2.7) is

y∗
(2,2,2) = 1, y∗

α = 0, ∀α = (2, 2, 2).

The global minimum r∗ = 3 because

x4
1x2

2 + x2
1x4

2 + x6
3 − 3x2

1x2
2x2

3 ≥ 0 ∀x ∈ R
3

and r(1, 1, 1) = 3. So in this example, the SOS lower bound r∗
sos < r∗. Actually for any

0 < γ ≤ 3, the polynomial

x4
1x2

2 + x2
1x4

2 + x6
3 − γ x2

1x2
2x2

3

is nonnegative but not SOS. The proof is the same as to prove that the Motzkin
polynomial

x4
1x2

2 + x2
1x4

2 + x6
3 − 3x2

1x2
2x2

3

is not SOS [28].

2.1 What if r∗
sos < r∗ ?

From Theorem 2.1, we know that r∗
sos = r∗ if and only if the polynomial f (x) − r∗g(x)

is SOS. But sometimes f (x)−r∗g(x) might not be SOS, as we observed in Example 2.5.
In this subsection, we discuss how to minimize a rational function r(x) when r∗

sos < r∗.
Here we generalize the big ball technique introduced in [15], but we must be very
careful about the zeros of the denominator g(x) in r(x).

Suppose we know that at least one global minimizer of r(x) belongs to the ball
B(c, ρ) := {x ∈ R

n : ρ2 − ‖x − c‖2
2 ≥ 0} with center c and radius ρ > 0. Let π(x) :=

ρ2 −‖x− c‖2
2. Then we immediately have that r∗ = min

x∈Rn
r(x) = min

x∈B(c,ρ)
r(x). In practice,

we can often choose the center c = 0 and radius ρ big enough. So the original uncon-
strained minimization problem (1.1) becomes the constrained problem

min
x∈B(c,ρ)

r(x).

One natural SOS relaxation of this constrained problem is

r∗
N := sup

γ
γ (2.8)

s.t. f (x) − γ g(x) ≡ σ0(x) + σ1(x)π(x) (2.9)

deg(σ1) ≤ 2(N − 1), σ0(x), σ1(x) ∈
∑

R[X]2. (2.10)
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Similar to the dual of (2.2)–(2.4), the dual problem of (2.8)–(2.10) can be found to be

r̂∗
N := inf

y

∑

α∈F

fαyα (2.11)

s.t.
∑

α

gαyα = 1, (2.12)

MN(y) � 0, (2.13)

MN−1(π ∗ y) � 0 (2.14)

where π is the vector of the coefficients of polynomial π(x). For a general polynomial
p(x) = ∑

α pαxα , the generalized moment matrix Mk(p ∗ y) is defined as

Mk(p ∗ y)(β, τ) :=
∑

α

pαyβ+τ+α , 0 ≤ |β|, |τ | ≤ k.

We have the following theorem for the SOS relaxation (2.8)–(2.10) and its dual (2.11)–
(2.14), which is similar to Theorem 3.4 in [15].

Theorem 2.6 Assume that r∗ > −∞ and at least one global minimizer of r(x) lies in
the ball B(c, ρ). If the numerator f (x) and denominator g(x) of r(x) have no common
real zeros on B(c, ρ), then the following holds:

(i) The lower bounds converge: lim
N→∞r∗

N = r∗.

(ii) For N large enough, there is no duality gap between (2.8)–(2.10) and its dual
(2.11)–(2.14), i.e., r∗

N = r̂∗
N.

(iii) For N large enough, r∗
N = r∗ if and only if f (x) − r∗g(x) = σ0(x) + σ1(x)π(x) for

some SOS polynomials σ0, σ1 with deg(σ1) ≤ 2(N − 1).
(iv) If r∗

N = r∗ for some integer N and u(j) (j = 1, . . . , t) are global minimizers on
B(c, ρ), then every vector y of the following form

y ∈
⎧
⎨

⎩

t∑

j=1

θjm2N(u(j)) : θj ≥ 0,
t∑

j=1

θj = 1

⎫
⎬

⎭

is an optimal solution to (2.11)–(2.14).

Proof (i) For any fixed γ < r∗, we can see that f (x) − γ g(x) > 0 on B(c, ρ) if g(x) = 0
(we have assumed that g(x) is nonnegative). When g(x) = 0, we must have f (x) ≥ 0.
Otherwise assume f (u) < 0 at some point u with g(u) = 0. Then in a neighborhood
of u, the rational polynomial r(x) has a singularity at u, and hence is unbounded from
below, which contradicts the assumption that r∗ > −∞. Thus g(x) = 0 implies f (x) ≥ 0
on B(c, ρ). So we have that

f (x) − γ g(x) ≥ 0, ∀x ∈ B(c, ρ).

Since γ < r∗, f (x) − γ g(x) = 0 implies that f (x) = g(x) = 0, which is not possible.
Therefore, the polynomal f (x) − γ g(x) is positive on ball B(c, ρ). Now by Putinar’s
Theorem [27], there exist SOS polynomials σ0, σ1 with degree high enough such that

f (x) − γ g(x) ≡ σ0(x) + σ1(x)π(x).

So in (2.8)–(2.10), γ can be chosen arbitrarily close to r∗. Therefore we have shown
the convergence of lower bounds r∗

N .
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(ii) Similar to the proof of Theorem 2.1, it suffices to show that the problems (2.11)–
(2.14) has a strictly feasible solution. Let µ be a measure with uniform distribution on
B(c, ρ). Define vector y = (yα) as follows:

yα :=
∫

xαdµ.

Now we show that MN(y) and MN−1(π ∗ y) are positive definite. MN(y) � 0 can be
shown in the same way as in the proof of (i) in Theorem 2.1. Now we show that
MN−1(π ∗ y) � 0. For any nonzero monomial-indexed vector q of the same length
as MN−1(π ∗ y) (it corresponds to a nonzero polynomial q(x) up to degree N − 1), it
holds that

qTMN−1(π ∗ y)q =
∫

q(x)2π(x)dµ = 1
Vol(B(c, ρ))

∫

B(c,ρ)

q(x)2π(x)dx > 0

which implies that MN−1(π ∗ y) is positive definite. In the above, Vol(B(c, ρ)) denotes
the volume of the ball B(c, ρ). Since g(x) is not identically zero and always nonnegative,
g(x) can not be always zero on B(c, ρ) and hence

∑

α

gαyα =
∫

g(x)dµ = 1
Vol(B(c, ρ))

∫

B(c,ρ)

g(x)dx > 0.

Now set the vector ŷ = y/
∑

α gαyα . Then can see that ŷ is an interior point for the
dual problems (2.11)–(2.14).

(iii) For any fixed γ̂ < r∗, from the previous arguments we know that the polyno-
mial f (x) − γ g(x) is positive on B(c, ρ). Then by Putinar’s Theorem, there exist SOS
polynomials s0(x), s1(x) with deg(σ1) high enough such that

f (x) − γ̂ g(x) ≡ s0(x) + s1(x)π(x).

This means that the primal convex problem (2.8)–(2.10) has a feasible solution. From
(ii) we know its dual problem (2.11)–(2.14) has a strict interior point. Now apply the
duality theory of standard convex programming, then we know the solution set of
(2.8)–(2.10) is nonempty. And notice that r∗ is obviously an upper bound for all r∗

N .
When r∗

N = r∗, we know r∗
N is optimal. For N sufficiently large, by (ii), the primal

problem (2.8)–(2.10) is guaranteed to have a solution. So there exist SOS polynomials
σ0(x), σ1(x) with deg(σ1) ≤ 2(N − 1) such that

f (x) − r∗g(x) ≡ σ0(x) + σ1(x) π(x).

The “if” direction is obvious.
The proof of (iv) is the same as (iii) of Theorem 2.1. ��

Remark 2.7 In Theorem 2.6, we need the assumption that the numerator f (x) and
denominator g(x) have no real common zeros on ball B(c, ρ) to show convergence
lim

N→∞r∗
N = r∗. When they have common real zeros, for any γ < r∗, the polynomial

f (x) − γ g(x) is not strictly positive on B(c, ρ) and hence Putinar’s Theorem can not
be applied. In such situations, the convergence is not guaranteed (see Remark 4.6).
However, in case of two variables, i.e., n = 2, if f (x) and g(x) have at most finitely
many real common zeros on B(c, ρ), we still have lim

N→∞r∗
N = r∗; furthermore, if the

global minimizers of r(x) are finite, then finite convergence holds, i.e., there exists
N ∈ N such that r∗

N = r∗. Please see Theorem 4.8 in Sect. 4. Notice that the ball B(c, ρ)

satisfies both conditions (i) and (ii) there.
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Remark 2.8 When f (x) and g(x) have common zeros on B(c, ρ), the solution to the
dual problems (2.11)–(2.14) is not unique. In such situations, some extracted points
from the moment matrix MN(y∗) may not be global minimizers and they might be the
common zeros of f (x) and g(x) (see Example 2.10).

Example 2.9 Consider the global minimization of the rational function (obtained by
plugging x3 = 1 into Example 2.5)

x4
1x2

2 + x2
1x4

2 + 1

x2
1x2

2

.

Choose c = 0 and ρ = 2. For N = 3, the lower bound given by (2.8)–(2.10) is r∗
3 = 3,

and the solution to (2.11)–(2.13) is

y∗ = (1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 00, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1).

The moment matrix M3(y∗) has rank 4, and satisfies the flat extension condition. Four
points are extracted: (±1, ±1). They are all global minimizers.

Example 2.10 Consider the global minimization of the rational function (obtained by
plugging x2 = 1 into Example 2.5)

x4
1 + x2

1 + x6
3

x2
1x2

3

.

Choose c = 0 and ρ = 2. For N = 4, the lower bound given by (2.8)–(2.10) is
r∗

4 = 3.0000, and the solution to (2.11)–(2.13) is

y∗ ≈ (2.8377, 0, 0, 1, 0, 0, 1.0008, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0,

1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1).

The moment matrix has rank 6 and satisfies the flat extension condition. Six points
are extracted:

(±1.0000, ±1.0000), (0.0000, ±0.0211).

The evaluation of r(x) at these points shows that the first four points are global min-
imizers. The last two points are not global minimizers, but they are approximately
common zeros of the numerator and denominator (see Remark 2.2).

3 Nearest greatest common divisor

This section discusses the application of minimizing rational functions to find the
nearest common divisors of univariate polynomials.

Let p(z) and q(z) be two monic complex univariate polynomials of degree m such
that

p(z) = zm + pm−1zm−1 + pm−2zm−2 + · · · + p1z + p0, (3.1)

q(z) = zm + qm−1zm−1 + qm−2zm−2 + · · · + q1z + q0. (3.2)

Their coefficients pi, qj are all complex numbers. When p(z), q(z) have common divi-
sors, their greatest common divisor (GCD) can be computed exactly by using Euclid’s
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algorithm or other refined algorithms [2,3]. These algorithms need to assume that all
the coefficients of p(z) and q(z) are error-free, and return the exact GCD. However, in
practice, it is more interesting to compute the GCD of two polynomials whose coeffi-
cients may not be known exactly. In such situations, we often get the trivial common
divisor (the constant polynomial 1) if we apply exact methods like Euclid’s algorithm.

So instead, we will seek the smallest possible perturbations of the coefficients of
p(z) and q(z) that cause their GCD to be nontrivial, say z−c for some c. See [12,13,34,
Sect. 6.4] for a discussion of this problem. Our contribution is to solve the associated
global optimization problem by the methods we have introduced in the preceding
section, instead of finding all the real critical points (zero gradient) as suggested in
[12,13].

Throughout this paper, we equip the polynomials p(z), q(z) with ‖·‖2 norm of their

coefficients, i.e., ‖p‖2 =
√∑m−1

k=0 |pk|2, ‖q‖2 =
√∑m−1

k=0 |qk|2. The perturbations made
to p(z), q(z) are measured similarly. The basic problem in this section is what is the
minimum perturbation such that the perturbed polynomials have a common divisor?
To be more specific, suppose the perturbed polynomials have the form

p̂(z) = zm + p̂m−1zm−1 + p̂m−2zm−2 + · · · + p̂1z + p̂0 (3.3)

q̂(z) = zm + q̂m−1zm−1 + q̂m−2zm−2 + · · · + q̂1z + q̂0 (3.4)

with common zero c, i.e., p̂(c) = q̂(c) = 0. The perturbation are measured as

N (c, p̂, q̂) =
m−1∑

i=0

|pi − p̂i|2 +
m−1∑

j=0

|qj − q̂j|2.

The problem of finding nearest GCD can be formulated as to find (c, p̂, q̂) such that
N (c, p̂, q̂) is minimized subject to p̂(c) = q̂(c) = 0.

We can see that N (c, p̂, q̂) is a convex quadratic function in (p̂, q̂). But the con-
straints p̂(c) = q̂(c) = 0 are nonconvex. However, if the common root c is fixed, the
constraints p̂(c) = q̂(c) = 0 are linear with respect to (p̂, q̂), and the reduced quadratic
program has a solution with closed form. N (c, p̂, q̂) is a convex quadratic function
about (p̂, q̂). It can be shown [13] that

min
(p̂,q̂):p̂(c)=q̂(c)=0

N (c, p̂, q̂) = |p(c)|2 + |q(c)|2
∑m−1

i=0 |c2|i .

Therefore the problem of finding nearest perturbation becomes the global minimiza-
tion of a rational function

min
c∈C

|p(c)|2 + |q(c)|2
∑m−1

i=0 |c2|i (3.5)

over the complex plane. Karmarkar and Lakshman [13] proposed the following algo-
rithm to find the nearest perturbation:

Algorithm 3.1 (Nearest GCD algorithm [13])

Input Monic polynomials p(z), q(z).
Step 1 Determine the rational function r(x1, x2)

r(x1, x2) := |p(c)|2 + |q(c)|2
∑m−1

k=0 (x2
1 + x2

2)
k

, c = x1 +
√

−1x2.
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Step 2 Solve the polynomial system r(x1,x2)
∂x1

= r(x1,x2)
∂x1

= 0. Find all its real solutions

inside the box: −B ≤ x1, x2 ≤ B where B := 5 max(‖p‖2, ‖q‖2). Choose the
one (x̂1, x̂2) such that r(x̂1, x̂2) is minimum. Let c := x̂1 + √−1x̂2.

Step 3 Compute the perturbation of coefficient

λj := c̄jp(c)
∑m−1

k=0 |c2|k , µj := c̄jq(c)
∑m−1

k=0 |c2|k .

Output: The minimum perturbed polynomials with common divisors are returned
as

p̂(z) = zm +
m−1∑

k=0

(pk − λk)zk, q̂(z) = zm +
m−1∑

k=0

(qk − µk)zk.

The most expensive part in the algorithm above is Step 2. Karmarkar and Lakshman
[13] proposed to use numerical methods like Arnon and McCallum [1] or Manocha
and Demmel [18] to find all the real solutions of a polynomial system inside a box.

However, in practice, it is very expensive to find all the real solutions of a poly-
nomial system inside a box. So in this section, we propose to solve (3.5) by SOS
relaxations introduced in the previous section instead of finding all the real solutions
of a polynomial system. The SOS relaxation of problem (3.5) is the following:

sup γ

s.t. f (x1, x2) − γ (

m−1∑

i=0

(x2
1 + x2

2)
i) is SOS

where f (x1, x2) = |p(x1 + √−1x2)|2 + |q(x1 + √−1x2)|2.

In the following examples, we solve the global optimization problem via SOS
relaxation (2.2)–(2.4) and its dual (2.5)–(2.7). In all the examples here, the global
minimizers can be extracted and the big ball technique introduced in Sect. 2.1 is not
required.

Example 3.2 (Example 2.1 [13]) Consider polynomials

p(z) = z2 − 6z + 5,

q(z) = z2 − 6.30z + 5.72.

Solving SOS relaxation (2.2)–(2.4) and its dual (2.5)–(2.7), we find the global minimum
and extract one minimizer:

r∗ ≈ 0.0121, c∗ = x∗
1 +

√
−1x∗

2 ≈ 5.0971,

which are the same as found in [13].

Example 3.3 Consider polynomials

p(z) = z3 − 6z2 + 11z − 6,

q(z) = z3 − 6.24z2 + 10.75z − 6.50.



710 J Glob Optim (2008) 40:697–718

Solving SOS relaxation (2.2)–(2.4) and its dual (2.5)–(2.7), we get the lower bound
and extract one point

r∗
sos ≈ 0.0563, (x∗

1, x∗
2) ≈ (3.5725, 0.0000).

Evaluation of r(x) at x∗ shows that r(x∗) ≈ r∗
sos, which implies that c∗ ≈ 3.5725 is a

global minimizer for problem (3.5).

Example 3.4 Consider polynomials

p(z) = z3 + z2 − 2,

q(z) = z3 + 1.5z2 + 1.5z − 1.25.

Solving SOS relaxation (2.2)–(2.4) and its dual (2.5)–(2.7), we find the lower bound
r∗

sos ≈ 0.0643 and extract two points

x∗ ≈ (−1.0032, 1.1011), x∗∗ ≈ (−1.0032, −1.1011).

The evaluations of r(x) at x∗ and x∗∗ show that r(x∗) = r(x∗∗) ≈ r∗
sos, which implies

that x∗ and x∗∗ are both global minimizers. So c∗ = −1.0032 ± √−1 · 1.1011 are the
global minimizers of problem (3.5).

4 Constrained minimization

In this section, we discuss the global minimization of a rational function subject to
constraints described by polynomial inequalities. Consider the problem

r∗ := min
x∈Rn

r(x) := f (x)

g(x)
(4.1)

s.t. h1(x) ≥ 0, . . . , hm(x) ≥ 0 (4.2)

where f (x), g(x), hi(x) are all real multivariate polynomials in x. Without confusion,
we still let r∗ denote the minimum of the objective function subject to the constraints.
If some hi are rational functions, we can reformulate the constraints hi(x) ≥ 0 equiva-
lently as some polynomial inequalities (one should be careful with the zeros of hi(x)).
Denote by S the feasible set. S is in the form of a basic closed semialgebraic set.
Here we assume that g(x) is not identically zero on S, and g(x) is nonnegative on S
(otherwise, replace f (x)

g(x)
by f (x)g(x)

g2(x)
).

When g(x) ≡ 1 (or a nonzero constant), problem (4.1)–(4.2) becomes a standard
constrained polynomial optimization problem. Lasserre [15] proposed a general pro-
cedure to solve this kind of optimization problem by a sequence of SOS relaxations.
To be more specific, for each fixed positive integer N, we seek γ as large as possible
such that f (x) − γ has the representation

f (x) − γ ≡ σ0(x) + σ1(x)h1(x) + · · · + σm(x)hm(x)

with all σi(x) being SOS and deg(σihi) ≤ 2N. Obviously each γ is a lower bound of
f (x) on S. Denote by f ∗

N the maximum γ under these conditions, which is also a lower
bound. These lower bounds f ∗

N converge to the minimum of f (x) on S under a certain
constraint qualification condition (see Assumption 4.1 below). A convergence rate is
given in [22]. We refer to [9,15,16,21,23,24] for more introductions on SOS methods
for polynomial optimization.
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When g(x) is a nonconstant polynomial nonnegative on S, Lasserre’s procedure
can be generalized in a natural way. Also see [10] for SOS relaxations for minimizing
rational functions subject to semialgebraic constraints. For each fixed positive integer
N, consider the SOS relaxation

r∗
N := sup γ (4.3)

s.t. f (x) − γ g(x) ≡ σ0(x) +
m∑

i=1

σi(x)hi(x), (4.4)

deg(gi) ≤ 2N − di, σi(x) ∈
∑

R[X]2 (4.5)

where di = �deg(hi)/2�. For any feasible γ above, it is obvious that f (x) − γ g(x) ≥ 0
on S and so r(x) ≥ γ . Thus every such γ (including r∗

N) is a lower bound of r(x) on S.

We denote by M(S) the set of polynomials which can be represented as

σ0(x) + σ1(x)h1(x) + · · · + σm(x)hm(x)

with all σi(x) being SOS. M(S) is called the quadratic module generated by poly-
nomials {h1, . . . , hm}. A subset M of polynomial ring R[X] is a quadratic module if
1 ∈ M, M + M ⊂ M and p2M ⊂ M for all p ∈ R[X]. Throughout this section, we
make the following assumption for M(S):

Assumption 4.1 (Constraint qualification condition) There exist R > 0 and SOS poly-
nomials s0(x), s1(x), . . . , sm(x) ∈ ∑

R[X]2 such that

R − ‖x‖2
2 = s0(x) + s1(x)h1(x) + · · · + sm(x)hm(x).

Remark 4.2 When the assumption above is satisfied, the quadratic module M(S) is
said to be Archimedean. Obviously, when this assumption holds, the semialgebraic set
S is contained in the ball B(0,

√
R) and hence compact, but the converse might not be

true. See Example 6.3.1 in [6] for a counterexample. Under this assumption, Putinar
[27] showed that every polynomial p(x) positive on S belongs to M(S).

Remark 4.3 When Assumption (4.1) does not hold, we can add in S one redundant
constraint like R − ‖x‖2

2 ≥ 0 for R sufficiently large (e.g., a norm bound is known in
advance for one global minimizer). Then the new quadratic module is always Archi-
medean. In practice, when the value of R is unknown, we can choose an initial guess
R1, say, R1 = 1, and then compute the minimum value f ∗

1 of f (x) on S ∩ B(0,
√

R1)

(we may need solve a sequence of SOS relaxations (4.3)–(4.5) to get this minimum).
After that, choose a larger R2 = 2R1, and compute the minimum value f ∗

2 of f (x) on
S ∩ B(0,

√
R2). Repeat this process. Then we can get a sequence of minima {f ∗

N}. The
sequence {f ∗

N} is decreasing because the minimum value of f (x) on S ∩ B(0,
√

R) is
decreasing when R is increasing. We terminate the computation when the sequence
{f ∗

N} converges. See Example 4.4 for how this process works.

Example 4.4 Consider the problem

min
x

x2
1x2 + x1x2

2 + 8

2x1x2

s.t. x1, x2 ≥ 0.
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Applying arithmetic–geometric mean inequality, we can easily see that the global
minimum f ∗ = 3. The feasible set S here is not compact. Now we illustrate how
to compute the minimum f ∗ by adding redundant constraint R − ‖x‖2

2 ≥ 0. We set
R1 = 1, R2 = 2, R3 = 4, R4 = 8, R5 = 16 and compute the minimum values f ∗

k of f (x)

on S ∩ B(0,
√

Rk) for k = 1, 2, 3, 4, 5. By SOS implementations, we get the following
table

k 1 2 3 4 5
Rk 1 2 4 8 16
f ∗
k 8.7071 5.0000 3.4142 3.0000 3.0000

.

Convergence is obtained at k = 5.

Similar to the derivation of (2.5)–(2.7), the dual problem of (4.3)–(4.4) can be found
to be

inf
y

∑

α∈F

fαyα (4.6)

s.t.
∑

α

gαyα = 1, (4.7)

MN(y) � 0, (4.8)

MN−di(hi ∗ y) � 0, i = 1, . . . , m. (4.9)

The properties of SOS relaxations (4.3)–(4.5) and (4.6)–(4.9) are summarized as fol-
lows:

Theorem 4.5 Assume that the minimum r∗ of r(x) on S is finite, and f (x) = g(x) = 0
has no solutions on S. Then the following holds:

(i) Convergence of the lower bounds: lim
N→∞r∗

N = r∗. If, furthermore, S has nonempty

interior, then (ii) and (iii) below are true.
(ii) For N large enough, there is no duality gap between (4.3)–(4.5) and its dual

(4.6)–(4.9).
(iii) For N large enough, r∗

N = r∗ if and only if f (x) − r∗g(x) ≡ σ0(x) + ∑m
i=1 σihi(x)

for SOS polynomials σi(x) with deg(σihi) ≤ 2N.
(iv) If r∗

N = r∗ for some integer N and u(j) (j = 1, . . . , t) are global minimizers on S,
then every vector y of the following form

y ∈
⎧
⎨

⎩

t∑

j=1

θjm2N(u(j)) : θj ≥ 0,
t∑

j=1

θj = 1

⎫
⎬

⎭

is an optimal solution to (4.6)–(4.9).

Proof (i) For any γ < r∗, we have that the polynomial

ϑγ (x) := f (x) − γ g(x)

is nonnegative on S. When ϑγ (u) = 0 for some point u ∈ S, we must have f (u) =
g(u) = 0, since otherwise g(u) > 0 (g(x) is assumed to be nonnegative on S) and
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r(u) = γ < r∗, which is impossible. Therefore ϑγ (x) is positive on S. By Putinar’s
Theorem [27], there exist SOS polynomials σi(x) of degree high enough such that

ϑγ (x) ≡ σ0(x) +
m∑

i=1

σi(x)hi(x).

Therefore the claim in (i) is true.
(ii)–(iv): The proof here is almost the same as for Theorem 2.6. In a similar way,

show that (4.3)–(4.5) has a feasible solution, and (4.6)–(4.9) has an interior point.
Then apply the duality theory of convex programming. In (iv), check every y with
given form is feasible and achieves the optimal objective value. ��

Remark 4.6 In Theorem 4.5, we made the assumption that f (x) and g(x) have no
common zeros on S. But sometimes f (x) and g(x) may have common zeros, and it
is also possible that the minimum r∗ is attained at the common zero(s) (in this case,
f (x) and g(x) are of the same magnitude order around the common zero(s)). In such
situations, we can not apply Putinar’s Theorem and might not have convergence. For
a counterexample, consider problem

min r(x) := 1 + x
(1 − x2)2

s.t. (1 − x2)3 ≥ 0.

The global minimum is r∗ = 27
32 and the minimizer is x∗ = − 1

3 . However, for any
γ < 27

32 , there do not exist SOS polynomials σ0(x), σ1(x) such that

1 + x − γ (1 − x2)2 ≡ σ0(x) + σ1(x)(1 − x2)3.

Otherwise, for a contradiction, suppose they exist. Then the left hand side vanishes at
x = −1 and so does the right-hand side. So x = −1 is a zero of σ0(x) with multiplicity
greater than one, since σ0 is SOS. Hence x = −1 is a multiple zero of the left-hand
side, which is impossible since the derivative of 1 + x − γ (1 − x2)2 at x = −1 is 1.
This counterexample is motivated by the one given by Stengle [33], which shows that
the polynomial 1 − x2 does not belong to the quadratic module M((1 − x2)3) since
1 − x2 is not strictly positive on {x : (1 − x2)3 ≥ 0}. On the other hand, if we can
know in advance that the global minimum is not attained where the denominator g(x)

vanishes, one way to overcome this difficulty is to add more constraints which keep
the global minimizers but eliminate the zeros of g(x).

Remark 4.7 When f (x) and g(x) have common zeros on S, the solution to the dual
problems (4.6)–(4.9) is not unique. In such situations, some extracted points from
the moment matrix MN(y∗ + ŷ) may not be global minimizers but they might be the
common zeros of f (x) and g(x) (see Remark 2.2).

When n = 2, i.e., in case of two variables, the distinguished representations of
nonnegative polynomials by Scheiderer [30] are very useful. Under some conditions
on the geometry of the feasible set S, convergence or even finite convergence holds if
f (x) and g(x) have finitely many common zeros on S. This yields our next theorem.
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Theorem 4.8 Suppose n = 2. Let Z(f , g) = {u ∈ S : f (u) = g(u) = 0} and  be the set
of global minimizer(s) of r(x) on S. We have convergence lim

N→∞r∗
N = r∗ if � = Z(f , g)

is finite and satisfies at least one of the following two conditions:

(i) Each curve Ci = {x ∈ C
2 : hi(x) = 0} (i = 1, . . . , m) is reduced and no two of

them share an irreducible component. No point in � is a singular point of the
curve C1 ∪ · · · ∪ Cm.

(ii) Each point of � is an isolated real common zero of f (x) − r∗g(x) in R
2, but not

an isolated point of the feasible set S.

Furthermore, if � = Z(f , g) ∪  is finite and satisfies at least one of (i) and (ii), then we
have finite convergence, i.e., there exists an integer N such that r∗

N = r∗.

Proof First, assume that � = Z(f , g) is finite and satisfies at least one of (i) and (ii).
For any γ < r∗, we have that the polynomial

ϑγ (x) := f (x) − γ g(x)

is nonnegative on S. When ϑγ (u) = 0 for some point u ∈ S, we must have f (u) =
g(u) = 0, since otherwise g(u) > 0 and r(u) = γ < r∗, which is impossible. By the
assumption in the theorem, the nonnegative polynomial ϑγ (x) has at most finitely
many zeros on S. Now applying Corollary 3.7(if (i) holds) or Corollary 3.10 (if (ii)
holds) in [30], we know that there exist SOS polynomials σi(x) of degree high enough
such that

ϑγ (x) ≡ σ0(x) +
m∑

i=1

σi(x)hi(x).

Second, assume that � = Z(f , g)∪ is finite and satisfies at least one of (i) and (ii).
Consider the polynomial ϑr∗(x) := f (x) − r∗g(x), which is nonnegative on S. When
ϑr∗(u) = 0 for some u ∈ S, we must have either f (u) = g(u) = 0 or r(u) = r∗. Thus
polynomial ϑr∗(x) has at most finitely many zeros on S. Corollary 3.7(if (i) holds) or
Corollary 3.10 (if (ii) holds) in [30] implies that there are SOS polynomials σi(x) with
deg(σihi) ≤ 2N (N is large enough) such that

ϑr∗(x) ≡ σ0(x) +
m∑

i=1

σi(x)hi(x)

which completes the proof. ��

Example 4.9 Consider the problem

min
x

x4
1x2

2 + x2
1x4

2 + 1

x2
1x2

2

,

s.t. x1, x2 ≥ 0, 1 − x2
1 − x2

2 ≥ 0.

SOS relaxations (4.3)–(4.5) with order N = 3 yields lower bound r3 ≈ 5.000, and
we can extract one point x∗ ≈ (0.7071, 0.7071) from the dual solution to (4.6)–(4.9).
r(x∗) ≈ 5.0000 shows that it is a global minimizer.
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Example 4.10 Consider the problem

min
x

x4
1 + x2

1 + x6
3

x2
1x2

3

,

s.t. x1, x3 ≥ 0, 1 − x2
1 − x2

3 ≥ 0.

SOS relaxation (4.3)–(4.5) with order N = 3 yields lower bound r3 ≈ 3.2324, and
we can extract one point x∗ ≈ (0.6276, 0.7785) from the dual solution to (4.6)–(4.9).
r(x∗) ≈ 3.2324 shows that it is a global minimizer.

Example 4.11 Consider the problem

min
x

x3
1 + x3

2 + 3x1x2 + 1

x2
1(x2 + 1) + x2

2(1 + x1) + x1 + x2
,

s.t. 2x1 − x2
1 ≥ 0, 2x2 − x2

2 ≥ 0,

4 − x1x2 ≥ 0, x2
1 + x2

2 − 1
2

≥ 0.

SOS relaxation (4.3)–(4.5) with order N = 2 yields lower bound r∗
2 = 1 and we can

extract three points

(0, 1), (1, 0), (1, 1)

from the dual solution to (4.6)–(4.9). The evaluations of r(x) at these three points
show that they are all global minimizers.

Example 4.12 Consider the problem

min
x

x4
1 + x4

2 + x4
3 + x2

1 + x2
2 + x2

3 + 2x1x2x3(x1 + x2 + x3)

x3
1 + x3

2 + x3
3 + 2x1x2x3

,

s.t. x4
1 + x4

2 + x4
3 = 1 + x2

1x2
2 + x2

2x2
3 + x2

3x2
1,

x3 ≥ x2 ≥ x1 ≥ 0.

SOS relaxation (4.3)–(4.5) with order N = 3 yields r∗
3 ≈ 2.0000 and we can extract

two points

x∗ ≈ (0.0000, 0.0000, 1.0000), x∗∗ ≈ (−0.0032, 0.9977, 0.9974)

from the dual solution to (4.6)–(4.9). x∗ is feasible and r(x∗) ≈ 2.0000 implies that
x∗ is a global minimizer. Now x∗∗ is not feasible, but if we round x∗∗ to the nearest
feasible point we get (0, 1, 1), which is another global minimizer since r(0, 1, 1) = 2.

Example 4.13 Consider the problem

min
x

x2
1 + x2

2 + x2
3 + x2

4 + 2(x2 + x3 + x1x3 + x1x4 + x2x4) + 1

x1 + x4 + x1x2 + x2x3 + x3x4
,

s.t. x2
1 + x2

2 − 2x3x4 = 0,

4 − x2
1 − x2

2 − x2
3 − x2

4 ≥ 0,

x1, x2, x3, x4 ≥ 0.
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SOS relaxation (4.3)–(4.5) with order N = 3 yields r∗
2 ≈ 2.0000 and we can extract

one point

x∗ ≈ (0.0002, 0.0000, 0.0000, 0.9998)

from the dual solution to (4.6)–(4.9). r(x∗) ≈ 2.0000 implies that x∗ is a global mini-
mizer (approximately). Actually the exact global minimizer is (0, 0, 0, 1).

5 Conclusions and future work

This paper studies the global minimization of rational functions with or without con-
straints. Sum of squares relaxations are proposed to solve these problems. We discuss
unconstrained and constrained minimization in Sects. 2 and 4, respectively. One appli-
cation in finding the nearest common divisors of univariate polynomials is shown in
Sect. 3. For constrained minimization, under some conditions, the convergence of
SOS relaxations can be shown when the numerator and denominator have no com-
mon zeros on the feasible set. When the numerator and denominator have common
zeros, the convergence might not hold. A counterexample is given in Remark 4.6.

The implementations of SOS relaxations rely on SDP solvers. Regarding the ques-
tion on what size problems (the number of variables and degree) can be solved in
practice using this approach, let us recall the relation between SOS polynomials and
the resulting SDPs. For a polynomial p(x) of degree 2d in n variables, p(x) being SOS
yields an LMI whose size is

(n+d
d

)
. This number can be huge for moderate n and d, say,

n = d = 10. However, when d is fixed, the size of the resulting LMI is polynomial in n.
So the SOS approach is still tractable. There are also many numerical experiments on
the size of polynomial problems which can be solved by SOS relaxations. See [23,24].
On the other hand, if the polynomials are sparse, then the size of the resulting LMI
can be reduced significantly. For practical problems, the sparsity must be exploited to
have efficient computations. We refer to [14,25,36] for work in this area.

The global minimization of rational functions has wide applications. Besides finding
the nearest common divisors of univariate polynomials, in linear system theory, filter
design can be formulated as an optimization related to rational functions [20]. Also
in approximation theory, people are often interested in using rational functions to
approximate a given function. This problem can be formulated as the global minimi-
zation of rational functions. In future work we will seek more interesting applications
of rational functions.

There are also some other possible generalizations of applying SOS relaxations
to minimize rational functions. Obviously, polynomials whose exponents are integers
(they can be negative) are rational functions. SOS relaxations can also be gener-
alized to minimize polynomials having rational exponents. For example, the global
minimization of function

x2
1 + x1x2 + √

x1 + 3
√

x2 + x2
2

can be equivalently transformed to the global minimization of polynomial

z8
1 + z4

1z3
2 + z2

1 + z2 + z6
2

by coordinate transformation x1 = x4
1, x2 = z3

2. Here we must pay attention to the
domain of variables. This might be an interesting future work.
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There are also some other convex relaxation methods for polynomial optimization
problems, e.g., reformulation-linearization technique (RLT) by Sherali and Tuncbilek
[31]. The RLT method generates polynomial implied constraints to be included in
the original polynomial optimization problem, and successively linearizes the result-
ing problem by linear programming (LP) relaxation. They use the obtained lower
bounds in branch-and-bound algorithms. The convergence of RLT methods is proven
when the feasible set is compact. It is also possible to generalize methods like RLT to
solve the global optimization problem of rational functions. For example, problems
(4.1)–(4.2) can be reformulated as the following polynomial optimization problem

min
x∈Rn,t∈R

t

s.t. h1(x) ≥ 0, . . . , hm(x) ≥ 0,

t · g(x) − f (x) ≥ 0, � ≤ t ≤ u,

where � is chosen sufficiently small and u is chosen sufficiently large. Then RLT meth-
ods can be applied to solve this new polynomial optimization problem. It is future
work to study the special features of RLT methods to minimize rational functions.

Acknowledgements The authors would like to thank Bernd Sturmfels and two referees for helpful
comments.
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